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Abstract

The purposes of this study were to develop a model to simulate nonmodel-fitting

responses in a CAT environment, and to examine the effectiveness of this model. The

underlying idea was to realistically simulate examinees' test behaviors. This study

simulated a situation in which examinees are exposed to or are coached on test items

before actual testing. The multidimensional item response theory (MIRT; Reckase,

1985) model was adopted in this study. Test characteristic curves and the proportion of

affected items administered to examinees were investigated. The results indicated that

the probability of an examinee responding to an item correctly and the proportion of

affected items administered to examinees were influenced by the severity and the number

of affected items. The results also suggested that the proposed model might be an

effective tool for investigating the issue of nonmodel-fitting responses in a CAT

environment.
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Simulating Nonmodel-Fitting Responses

in a CAT Environment

Nonmodelating responses occur when an examinee responds to test items in a

manner that is not congruent with the underlying test model. That is, if an examinee

responds correctly to a difficult item or incorrectly to an easy item in relation to his/her

ability (Reise & Due, 1991); thus, the examinee's responses are not as expected. This

area of research has been known as appropriateness measurement in the past (e.g.,

Drasgow, 1982; Drasgow & Levine, 1986; Levine & Rubin, 1979), and as person fit

more recently (e.g., Reise & Due, 1991). A variety of behaviors have been identified to

explain why a person's item response pattern does not follow the underlying test model.

Wright (1977), for example, suggested that examinees might be bored with a test and

respond incorrectly to easy items toward the end of test, examinees might cheat on tests,

or examinees might do poorly at the beginning of a test because the test format was

confusing. Levine and Rubin (1979) discussed other aberrant behaviors, such as

improperly aligning an answer sheet, using a poor test-taking strategy, or interpreting test

questions differently from the other examinees. In 1982, Levine and Drasgow suggested

the possibility of an examinee who might have high ability but due to atypical schooling

or low English fluency might respond test items in a nonmodel-fitting manner.

Much of the existing research on nonmodel-fitting responses has focused on the

development of statistical indices for detecting nonmodel-fitting response behaviors (e.g ,

Drasgow & Levine, 1986; Drasgow, Levine, & McLaughlin, 1987; Drasgow, Levine, &

Williams, 1985; Levine & Rubin, 1979; Tatsuoka, 1984; van der Flier, 1982). Other
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researchers have studied the properties of these statistical indices, such as the detection

power (e.g., Drasgow, Levine, & McLaughlin, 1987, 1991; Meijer, 1996; Nering, 1995;

Reise, 1995), or the distribution properties of those indices (e.g., Nering, 1995, 1996,

1997; Reise, 1995). A third research strand has been the investigation of robust ability

estimation techniques to reduce the effects of nonmodel-fitting responses (e.g., Meijer &

Nering, 1997; Mislevy & Bock, 1982; Wainer & Wright, 1980; Yi, 1998; Yi & Nering,

1998).

Although various research has been conducted in person fit area, most of the

research used Monte Carlo method. Previous research tried to develop methods to

simulate nonmodel-fitting responses. However, the typical nonmodel-fitting simulation

methods artificially created examinees' nonmodel-fitting response patterns that might not

reflect examinees' actual test behaviors.

Typical Nonmodel-Fitting Simulation Methods

One commonly used method to simulate nonmodel-fitting response vectors is to

change selected items from correct to incorrect or from incorrect to correct with certain

probabilities (e.g., Drasgow, Levine, & Williams,1985; Levine & Rubin, 1979). The

purpose of this type of manipulation is to create either a spuriously high score (i.e.,

changing incorrect responses to correct) that represents the situation in which a low

ability examinee copies answers of difficult items from a nearby more able neighbor, or a

spuriously low score (i.e., switching correct responses to incorrect) in that an able

examinee answers easy questions incorrectly due to language difficulties, atypical

education, or alignment errors (Drasgow, Levine, & McLaughlin, 1987). Another
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method to simulate nonmodel-fitting responses proposed by Reise (1995), is to reduce the

value of the IRT a parameter (see also Meijer & Nering, 1997). These two nonmodel-

fitting response simulation methods have been used in a variety of research studies (e.g.,

Nering, 1996). However, these types of nonmodel-fitting manipulation methods may

produce artificial response patterns, rather than response patterns that may happen in real

testing situations. Therefore, it is important to develop a method that may simulate

examinees' nonmodel-fitting response patterns in a way that may more accurately reflect

examinees' test behaviors.

Person Fit in Computerized Adaptive Testing

Most of the person-fit research has been conducted in conventional paper-and-

pencil test situations. However, due to the advantages of computerized adaptive testing

(CAT), the popularity of personal computers, and the vast development of computer

software, CAT is now viewed as a practical alternative to traditional paper-and-pencil

tests. Therefore, in order to fully understand the potential of CAT, it is necessary to

study the effects of nonmodel-fitting responses in a CAT environment.

CAT is designed to overcome some of the problems encountered with traditional

paper-and-pencil tests. For example, in a paper-and-pencil test every examinee is

administered the same test items regardless of his/her ability level. CAT is accomplished

by "tailoring" test items to an individual examinee in such a way that an examinee only

receives items that appear to be appropriate for his/her estimated ability level.

The potential advantages of CAT for educational and psychological testing are

well documented in the literature (e.g., Parshall, 1992; Wainer, 1990; Wise & Plake,
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1989). Research has shown that an equally reliable score can be obtained in CAT with

approximately half the items required in paper-and-pencil tests (e.g., McBride, 1985;

Olsen, Maynes, Slawson, & Ho, 1989; Wainer, 1993; Weiss, 1982). Other advantages of

CAT include frequent and convenient test scheduling, immediate scoring, computer-

collection of data, and presenting items in a multimedia environment.

The measurement efficiency or shorter tests, is one often-mentioned advantage of

CAT, but this efficiency may bring several practical concerns. Most computerized

adaptive tests use item selection and scoring algorithms that depend on item response

theory (IRT) models, which are based on strong assumptions (e.g., unidimensionality,

local independence, and monitonicity). In practice, these assumptions are often violated,

which may seriously compromise the quality of examinee's test scores and trait

estimates. Model assumption violations could lead to a response pattern that may not fit

the underlying test model, and result in an ability estimate that does not accurately reflect

the latent trait of the examinee.

The problem of examinees having been coached on test items has been a

particular challenging issue in real testing situations (Meijer, 1996). This problem is

especially pronounced in CAT administrations because of the more frequent

administration dates typically available in CAT programs (Davey & Nering, 1998).

Thus, the possibility of examinees obtaining pre-knowledge of a test, that is, examinees

being coached on test items or items being exposed to examinees before testing, may be

increased in a CAT environment. Obtaining pre-knowledge of a test may result in

exposed items becoming easier, and may result in an inflated probability of an examinee

answering an item correctly.
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There are three main concerns relating to test security in both paper-and-pencil

and CAT administration: repeaters, cheaters, and coaching schools (Patsula & Steffen,

1997). In practice, it may be difficult to distinguish those examinees who have violated

test security from those who have not. However, examinees' nonmodel-fitting responses

may affect the measurement of their estimated scores.

As indicated above, there is limited research on the effects of nonmodel-fitting

responses in a CAT environment. Some research has indicated that even a small number

of nonmodel-fitting responses could impact the estimate of examinees' ability in a CAT

environment. Nering (1996) studied the effects of nonmodel-fitting responses on test

length and final 6 values within a CAT environment. The nonmodel-fitting responses

were simulated by changing correct responses to incorrect or incorrect to correct

responses. This study manipulated examinees' responses to 1, 2, 3, 4, or 5 items,

respectively. The manipulation occurred at different points during the CAT

administration: between items 1 through 5, items 3 through 7, and so forth. Nering

discovered that the 6 values were inaccurate when the number of nonmodel-fitting

responses increased to 4 or 5 items. He also suggested that if the nonmodel-fitting

responses occurred early in the CAT administration (i.e., between items 1 and 5), the 6

values would be affected more than if the nonmodel-fitting responses occurred later in

the CAT administration.

Although Nering (1996) discovered that nonmodel-fitting responses in CAT

administration influenced the accuracy of ability estimates, his findings might be

somewhat limited due to the methods used in the simulations. Similar to previous

researchers, Nering simulated nonmodel-fitting responses simply by changing correct

io



6

responses to incorrect and incorrect to correct. Additional research is needed so that

methods of simulating actual examinees' test behaviors can be developed.

Purpose

There were two purposes in this study. One was to develop a method that might

realistically simulate examinees' nonmodel-fitting responses in a CAT environment.

This study simulated a scenario where an examinee obtains pre-knowledge of a test (i.e.,

examinees have been coached on test items or they have been exposed to items before the

actual testing). This type of nonmodel-fitting response could happen in a real testing

situation, especially in a CAT environment. Pre-knowledge of a test may compromise

the results of a test administration, thus, may provide inaccurate information about

examinees' estimated ability.

The nonmodel-fitting responses were simulated in a two-stage process. In the

first stage, CAT was administered to several simulees who had a relatively high ability

level, and the items administered to those examinees were recorded. In the second stage

of this simulation model, certain percentages of items were selected to represent the

nonmodel-fitting responses based on the items administered to those high ability

examinees (in stage 1). The method of simulating nonmodel-fitting responses was to

reduce those selected items' item difficulty parameters. The details of the current

approach of simulation are described below. The underlying idea of this simulation was

to create a situation that might actually occur in a CAT administration rather than simply

changing the correctness of a response.

1 1
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The other purpose of this study was to evaluate this simulation model. The goal

of this investigation was to determine if this newly developed simulation model

functioned in a way as expected. That is, whether the number of items manipulated and

the severity of the manipulation influenced the simulation results.

Method

Data Simulation

This study adopted the simulation method that was used in Yi and Nering (1998).

In this study, a MIRT model was used as the template to simulate examinees' item

responses (0/1s). The underlying goal was to simulate response patterns in a realistic

manner (Davey, Nering, & Thompson, 1997; Parshall, Kromrey, Chason, & Yi, 1997).

The simulated data were generated based on actual examinees' responses to eight forms

of the ACT Mathematics Test. Sixty items were included in each test form, which

resulted in a 480 item pool. Fifty-one score categories (e.g., 10, 11, 12, ...., 60; that is,

the sum of the proportion correct scores in a test form) were created that represented

examinees' ability level. A score category was defined to be a one unit (or more) interval

(e.g., 10.5 x <11.5, 11.5 x < 12.5, ..., where x represents a score category) on the

number correct response scale. Simulees would be classified into a score category based

on the sum of the P -values from the MIRT model calculation.

Procedure of CAT Administration

The high dimensional CAT model was used in this research. This high

dimensional CAT model is very similar to its unidimensional counterpart (see Yi &

Nering, 1998). For this study, a 25 item fixed-length CAT was implemented. The

1 2
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maximum likelihood estimation (MLE) procedure was used as both the provisional and

final ability estimation methods, because it is the most widely used method of ability

estimation. The Sympson and Hetter (1985) item exposure control procedure was used in

this study. The content balancing method that is based on the approach proposed by

Davey and Thomas (1996) was implemented in the CAT administration. In this high

dimensional CAT model, an examinee's item response was determined by the

compensatory MIRT model. The probability of a correct response to item i in a k-

dimensional compensatory normal ogive model (Davey et al., 1997) can be expressed as:

P(u=-110 1,d, ,c1) = c, + (1c1)(13(a7:01 + di)

where

is the score (0/1) on item i (i = 1, 2, 3,...,n) by

person j (j = 1,2,3,..., N),
a, is the vector of item discrimination parameters

(a,k = ail, a,2,a,3,...,a,,) for item i in k
dimensions (k =1, 2,3,..., m),

d, is the scalar difficulty parameter for item i ,
negative d values represent difficult items, and
positive values represent easy items,

c, is the scalar lower asymptote parameter for item i

is the vector of 0 for person j ,

represents the normal distribution function, and

P(u, =110 3,adc1) is the probability of an examinee j correctly

answering item i .

In this IRT model, there is an item discrimination parameter for each dimension of the

model but only one overall item difficulty parameter. The components in the function are

additive, thus, being low on one latent trait can be compensated for by being high on

another trait.

13
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Nonmodel-Fitting Responses Simulation

As indicated above, the procedure of selecting items to be nonmodel-fitting

responses took two steps. In the first step, a CAT was administered to high ability

simulees (i.e., 9 = 1.5 that was equivalent to score category around 46) whose responses

probabilistically fit the underlying test model. The rationale for using high ability

examinees for item selection was that these examinees are more likely to memorize items

administered to them when they take a CAT, and they might then share these memorized

items with other examinees. This would result in those memorized items having lower

item difficulty parameter values (d) than when they were originally calibrated. For this

stage of the study, 25 high ability examinees (6 = 1.5) were generated. In the second

step of the nonmodel-fitting responses simulation, an item number matrix was developed

(i.e., 25 examinees X 25 items) based on the CAT administration to this group of

examinees. From this item number matrix, 24, 48, or 72 items (i.e., 5%, 10%, 15% of the

480 item pool) were randomly selected that reflected situations in which a small,

medium, or large percentage of item pool was exposed. These items were then

manipulated by reducing item difficulty parameter values by either 0.5, 0.75, or 1.0,

representing the conditions with minor, moderate, or major affected items. The

procedure of selecting items to be manipulated is displayed in Figure 1 by a flowchart.

Conditions of Study

The null condition of this study was defined as the condition in which no

manipulation was done to the test items (i.e., no affected items were included). The

experimental conditions, on the other hand, included the affected items, in which the

percentage of item pool exposed and the severity of affected items were crossed, resulting

14
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in 9 conditions (3 percentages of exposed item pool X 3 levels of severity of affected

items). A total of 10 study conditions were involved in the current research (i.e., 1 null

and 9 experimental conditions).

Data Analysis

The test characteristic curves (TCCs) and the proportion of affected items

administered to examinees under various study conditions were used as ways to evaluate

the effectiveness of this nonmodel-fitting response simulation model. To determine how

the affected items of an item pool influenced the resulting TCCs, the average P-values

under different study conditions were examined conditionally on the score category. This

was done as a way of evaluating how the percentage of exposed item pool and the

severity of affected items influenced the calculation of average P-values along the ability

continuum. TCCs were obtained as the sum of the P-values along the score category.

The P-values were calculated based on the MIRT model on those selected items. The

TCCs for the experimental conditions were compared to those found in the null

condition.

The proportion of affected items administered to examinees was also studied.

The goal was to determine if the percentage of exposed item pool and the severity of

affected items in fact impacted whether affected items would be administered to

examinees. In addition, this investigation also might provide information in terms of

what kind examinee (e.g., at which point on the score category) would be affected the

most by gaining pre-knowledge of a test.

1 5
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Results

Visual display was used as the method to summarize the results for this study.

This method has the advantage of easily displaying the differences among conditions.

Figures 2 to 4 present the TCCs under different experimental conditions (e.g., 5%, 10%,

or 15% exposed item pool and 0.5, 0.75, or 1.0 reduced item difficulty parameter values).

The TCCs from the null conditions were compared to the TCCs from the experimental

conditions. The calculations of the average P-values were based on the situation as if

there were 24, 48, or 72 items in the item pool and all those items were exposed to

examinees with different levels of affected items before the actual testing. Figure 2

displays the TCCs under the 5% (i.e., 24 items) exposed item pool condition across the

four levels of affected items (i.e., no, minor, moderate, and major affected items). As the

levels of severity of affected items increased, so did the difference between average P-

values from the experimental and the null conditions (see Figure 2). The average P-

values appeared to be higher in the experimental conditions than those in the null

condition. Examinees with abilities at the extreme score categories were not affected as

much as examinees with mid-range score categories.

Figures 3 and 4 present the TCCs under the 10% (i.e., 48 items) and the 15% (i.e.,

72 items) exposed item pool conditions. The average P-values obtained under the

experimental conditions were larger than those from the null condition, especially when

the nonmodel fitting became more severe. It seemed that the severity of affected items

influenced the TCCs more than the percentage of exposed item pool. Azross Figures 2 to

4, it is clear that the patterns of the TCCs shifting from the null conditions were similar

_1 6
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under these three percentages of exposed item pool conditions, but the amount of shifting

increased as the severity of affected items became higher.

The results obtained from the calculation of the average P-values indicated that

the model for simulating the nonmodel-fitting responses that was developed in this study

affected the resulting TCCs. Average P-values shifted to higher values when there were

nonmodel-fitting responses in comparison to the average P-values under the null

conditions. This shift increased when the nonmodel fitting became more severe (e.g.,

larger percentage of exposed item pool and major affected items).

Figures 5 to 7 present the results of the proportion of affected items administered

to examinees at each score category under different study conditions. The proportion of

affected items administered to examinees under the 5% exposed item pool (i.e., 24 items)

conditions across the three levels of severity of affected items is displayed in Figure 5.

The shapes of the proportion of affected items administered to examinees were relatively

similar across these three levels of severity of affected items (i.e., minor, moderate, and

major affected items). There were fewer affected items administered to examinees at

extreme ability levels (e.g., low or high score categories). The maximum proportion of

affected items administered to examinees was about 0.27 (i.e., about 7 affcued items

administered to examinees out of a 25 item test) at the score category around 46. Thus,

examinees whose estimated ability was close to the point (6 = 1.5; around score category

46) from where nonmodel-fitting items were selected were administered the maximum

proportion of affected items.

Figure 6 displays the proportion of affected items administered to examinees

under the 10% (i.e., 48 items) exposed item pool conditions. Similar patterns were

17
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discovered in the 10% exposed item pool conditions as those in 5% exposed item pool

conditions. The influence of the severity of affected items on the proportion of affected

items administered to examinees was relatively small. The maximum proportion of

affected items given to examinees was around score category 46. However, when there

were 10% items exposed, the maximum percentage of affected items administered to

examinees increased to about 63% (i.e., about 16 out of 25 administered items were

affected items) of the total administered items. Unsurprisingly, there were more affected

items administered to examinees around the point (i.e., around score category 46 or 0

approximately equaled to 1.5) from where the affected items were originally selected.

Figure 7 presents the results obtained from the 15% (i.e., 72 items) exposed item

pool conditions. Similar to the 5% and the 10% exposed item pool conditions, the

severity of affected items did not have big effects on the number of affected items

administered to examinees. However, the maximum percentage of affected items

administered to examinees increased to about 69% under the 15% exposed item pool

conditions (i.e., about 17 out of 25 item test were affected items). Examinees whose

estimated ability close to 1.5 were administered the maximum percentage of affected

items.

The results of the proportion of affected items administered to examinees

indicated that examinees whose estimated ability close to the ability from where the

affected items were selected were influenced the most by the pre-knowledge of a test. In

addition, the proportion of affected items administered to examinees also was affected by

the percentage of exposed item pool. The larger the percentage of affected item pool, the

more affected items administered to examinees. The severity levels of affected items, on

18
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the other hand, had relatively small effects on the proportion of affected items

administered to examinees.

Discussion

CAT has efficiency as an often-mentioned advantage; however, this efficiency

may cause practical concerns in real testing situations particularly when test security has

been compromised. For example, if examinees have been coached on the test or they

have been exposed to items before testing, then, the reliability and the validity of the test

results will be questionable. There has been limited research on the influence of

nonmodel-fitting responses in a CAT environment. In addition, typical methods of

simulating nonmodel-fitting responses do not reflect actual examinees' test behaviors

(e.g., Levine & Rubin, 1979). The main goal of this study was to develop a more realistic

nonmodel-fitting response simulation model in CAT environment.

The results of this study indicated that the proposed model for simulating the

nonmodel-fitting responses influenced the calculation of the average P-values and the

number of manipulated items administered to examinees. The change in the average P-

values for examinees was influenced by the severity of the reduction in item difficulty

parameter. The estimated P-values were higher for examinees responding to items in a

nonmodel-fitting way.

The proportion of affected items administered to examinees increased as the

percentage of exposed item pool increased. The maximum percentage of affected items

administered to examinees occurred around score category 46, that is, the point at which

the affected items were initially selected. The results indicated that if a certain part of an

19
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item pool was exposed to examinees who had relative high ability, then other examinees

who had similar abilities would have more chance to be administered these exposed

items.

This study was an initial investigation of the effects of nonmodel-fitting responses

in a CAT environment. The nonmodel-fitting simulation model appeared to function in

an expected manner; however, additional research is needed to further study the effects of

nonmodel-fitting responses in CAT administration. This study only simulated one kind

of nonmodel-fitting behavior (i.e., examinees obtaining knowledge of test items before

actual testing). Models that simulate other nonmodel-fitting responses need to be

developed, such as cheating behavior, or distracted behavior in a test administration. In

practice, it is difficult to differentiate between nonmodel-fitting and model-fitting

responses; however, it is important to provide accurate information about examinees' test

performance. Therefore, future research needs to investigate whether certain CAT

procedures (e.g., robust ability estimation methods or robust item selection methods) can

alleviate the effects of nonmodel-fitting responses, and can provide accurate

measurement on assessment tasks.
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